Геометрия евклида

Евклидова геометрия

Евклидова геометрия — это геометрическая теория, основанная на системе аксиом, которая была впервые изложена в третьем веке до нашей эры великим древнегреческим математиком Евклидом в грандиозном научном труде «Начала».Система аксиом Евклида базируется на основных геометрические понятиях таких, как точка, прямая, плоскость, движение, а также на следующие отношения: «точка лежит на прямой на плоскости», «точка лежит между двумя другими».В «Началах» Евклид представил следующую аксиоматику:

  • От всякой точки до всякой точки можно провести прямую.

  • Ограниченную прямую можно непрерывно продолжать по прямой.

  • Из всякого центра всяким раствором может быть описан круг.

  • Все прямые углы равны между собой.

  • Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых.

Тщательное изучение аксиоматики Евклида во второй половине XIX века показало её неполноту. В 1899 году Д. Гилберт предложил первую строгую аксиоматику евклидовой геометрии. Впоследствии еще не раз ученые предпринимали попытки усовершенствовать аксиоматику евклидовой геометрии. Кроме аксиоматики Гилберта, известными считаются: аксиоматики Тарского и аксиоматики Биргофа, которая состоит всего лишь из 4 аксиом.В современной трактовке система аксиом Евклида может быть разделена на пять групп:Аксиомы сочетания.

  • Во-первых, через каждые две точки можно провести прямую и притом только одну.

  • Во-вторых, на каждой прямой лежат по крайней мере две точки. При этом существуют хотя бы три точки, которые не лежат на одной прямой.

  • В-третьих, через каждые три точки, не лежащие на одной прямой, можно провести плоскость и притом только одну.

  • В-четвертых, на каждой плоскости есть по крайней мере три точки, а также существуют хотя бы четыре точки, не лежащие в одной плоскости.

  • В-пятых, если две точки данной прямой лежат на данной плоскости, значит и сама прямая лежит на этой плоскости.

  • В-шестых, если две плоскости имеют общую точку, то, следовательно они имеют и общую прямую.

Кстати, Омар Хайям в девятом веке заметил, что Евклид в своих сочинениях доказал многое из того, что не нуждалось в доказательстве. Так появились аксиомы.

Аксиомы порядка.

  • Во-первых, если точка В лежит между А и С, то все три лежат на одной прямой.

  • Во-вторых, для каждых точек А, В существует такая точка С, что В лежит между А и С.

  • В-третьих, из трёх точек прямой только одна лежит между двумя другими.

  • В-четвертых, если прямая пересекает одну сторону треугольника, значит она пересекает при этом и другую его сторону или проходит через вершину (отрезок AB определяется как множество точек, лежащих между А и В; аналогично определяются стороны треугольника).

Аксиомы движения.

  • Во-первых, движение ставит в соответствие точкам точки, прямым прямые, плоскостям плоскости, сохраняя принадлежность точек прямым и плоскостям.

  • Во-вторых, два последовательных движения вновь дают движение, и для всякого движения есть обратное.

  • В-третьих, если даны точки А, A’ и полуплоскости A, A‘, ограниченные продолженными полупрямыми а, а’, которые исходят из точек А, A’, то существует единственное движение, переводящее А, а, A в A’, a’, A’ (полупрямая и полуплоскость легко определяются на основе понятий сочетания и порядка).

Аксиомы непрерывности.

  • Во-первых, как гласит аксиома Архимеда, всякий отрезок можно перекрыть любым отрезком, откладывая на первом его достаточное количество раз (откладывание отрезка осуществляется движением).

  • Во-вторых, согласно аксиоме Кантора: если дана последовательность отрезков, вложенных один в другой, то все они имеют хотя бы одну общую точку.

Аксиома параллельности Евклида: через точку А вне прямой а в плоскости, проходящей через А и а, можно провести лишь одну прямую, не пересекающую а. Евклидова геометрия стала результатом систематизации и обобщения наглядных представлений человека об окружающем мире.

Главная | Геометрия и искусство | Плоские фигуры | Пространственные фигуры | Движения и преобразования | Орнаменты и стили | Доклад | Разное | Галерея | Главная Карта Сайта

Важность

Перед тем была представлена Бельтрами, Клейном и Пуанкаром в модели неевклидовой плоскости, геометрия Евклида стояла неоспоримую как математическая модель в пространстве . Более того, поскольку суть предмета в синтетической геометрии была главным проявлением рациональности, евклидова точка зрения представляла абсолютный авторитет.

Открытие неевклидовой геометрии имело волновой эффект, выходящий далеко за рамки математики и естественных наук. Отношение философа Иммануила Канта к человеческому знанию сыграло особую роль в геометрии. Это был его главный пример синтетического априорного знания; не выведенные из органов чувств и не выведенные с помощью логики — наши знания о космосе были истиной, с которой мы родились. К несчастью для Канта, его концепция этой неизменно истинной геометрии была евклидовой. На богословие также повлиял переход от абсолютной истины к относительной истине в том, как математика соотносится с окружающим миром, что явилось результатом этой смены парадигмы.

Неевклидова геометрия является примером научной революции в истории науки , когда математики и ученые изменили свой взгляд на свои предметы. Некоторые геометры называли Лобачевского « Коперником геометрии» из-за революционного характера его работ.

Существование неевклидовой геометрии во многом повлияло на интеллектуальную жизнь виклидской Англии и, в частности, было одним из ведущих факторов, вызвавших пересмотр преподавания геометрии, основанного на Элементах Евклида . В то время этот вопрос об учебной программе горячо обсуждался и даже стал предметом книги « Евклид и его современные соперники» , написанной Чарльзом Латвиджем Доджсоном (1832–1898), более известным как Льюис Кэрролл , автором « Алисы в стране чудес» .

[править] Методы доказательства

Евклидова геометрия конструктивна. Постулаты 1, 2, 3 и 5 утверждают существование и уникальность определенных геометрических фигур, и эти утверждения носят конструктивный характер: то есть нам не только говорят, что определенные вещи существуют, но также дают методы для их создания с помощью не более чем циркуль и линейка без опознавательных знаков. В этом смысле евклидова геометрия более конкретна, чем многие современные аксиоматические системы, такие как теория множеств, которые часто утверждают существование объектов, не говоря, как их построить, или даже утверждают существование объектов, которые не могут быть построены в рамках теории. Строго говоря, линии на бумаге — это модели объектов, определенных в формальной системе, а не экземпляры этих объектов. Например, евклидова прямая линия не имеет ширины, но любая настоящая нарисованная линия будет. Хотя почти все современные математики считают неконструктивные методы столь же надежными, как и конструктивные, конструктивные доказательства Евклида часто вытесняли ошибочные неконструктивные — например, некоторые из пифагорейских доказательств, в которых использовались иррациональные числа, которые обычно требовали такого утверждения, как «Найдите наибольшую общую меру». из … «

Евклид часто использовал доказательство от противного. Евклидова геометрия также допускает метод наложения, при котором фигура переносится в другую точку пространства. Например, предложение I.4, конгруэнтность треугольников сторона-угол-сторона, доказывается перемещением одного из двух треугольников так, чтобы одна из его сторон совпадала с равной стороной другого треугольника, а затем доказыванием совпадения других сторон. Некоторые современные методы лечения добавляют шестой постулат, жесткость треугольника, который можно использовать как альтернативу суперпозиции.

биография

Нет прямого источника о жизни Евклида: у нас нет ни письма, ни автобиографических указаний (даже в виде предисловия к произведению), ни официальных документов, ни даже намеков кого-либо из его современников. Как резюмирует историк математики Питер Шрайбер, «о жизни Евклида не известно ни одного достоверного факта».

Написание старейшего известно о жизни появляется Евклид в сводке по истории геометрии , написанного V — го  века нашей эры философа неоплатоник Прокл , комментатор первой книги элементов . Сам Прокл не дает никаких указаний. Он только говорит, что «объединив свои Элементы , скоординировал многие из них и вызвал в неопровержимых демонстрациях те, которые его предшественники демонстрировали в небрежной манере. Этот человек также жил при первом Птолемее, потому что Архимед упоминает Евклида. Таким образом, Евклид старше учеников Платона , но старше Архимеда и Эратосфена  »

Принимая во внимание временную шкалу, данную Проклом, Евклид, Платон и Архимед, жившие между современниками Птолемея I er , следовательно, жили около 300 г. до н

Ж.-К.

Ни один документ не противоречит этим нескольким предложениям или не подтверждает их. Прямое упоминание Евклида в произведениях Архимеда происходит из отрывка, который считается сомнительным. Архимед также обратиться к некоторым результатам Стихии и ostrakon , найденный на острове Элефантина и датированных III — го  века до н.э., обсуждает цифры изученные в тринадцатой книге элементов , а десятиугольника и икосаэдра , но не воспроизводят евклидовы произнесение точно; поэтому они могли происходить из источников до Евклида. Ориентировочная дата 300 г. до н.э. Однако считается, что AD совместим с анализом содержания евклидовой работы и принят историками математики.

Кроме того, намек математиком IV — го  века нашей эры, Папп Александрийский , свидетельствует о том , что ученики Евклида преподавал в Александрии . На этом основании некоторые авторы связывают Евклида с Мусионом Александрийским , но, опять же, он не упоминается ни в одном соответствующем официальном документе. Квалификатор, часто связанный с Евклидом в древности, — это просто stoichéiôtês (на древнегреческом  : στοιχειωτής ), то есть «автор Элементов».

Портрет Евклида работы Жюста де Гана, написанный около 1474 года; геодезист ошибочно отождествлен с Евклидом из Мегары из- за распространенной в то время путаницы между последним и автором .

Про Евклида ходят несколько анекдотов, но, поскольку они появляются и для других математиков, они не считаются реалистичными: это, таким образом, один из знаменитых анекдотов Прокла, согласно которому Евклид ответил бы Птолемею — который хотел более легкого пути, чем элементы  — что там не было ни царская дорога в геометрии; вариант того же анекдота на самом деле приписывают Менехму и Александру Великому . Точно так же, начиная с поздней античности , различные подробности были добавлены к рассказам о жизни Евклида без новых источников и часто противоречивым образом. Таким образом, некоторые авторы рождают Евклида в Тире , другие — в Геле , ему приписывают различные генеалогии , конкретных мастеров, разные даты рождения и смерти, независимо от того, соблюдают ли правила жанра или одобряют определенные интерпретации. Таким образом, в средние века и в начале Возрождения математика Евклида часто путали с современным философом Платона Евклидом Мегарским .

Столкнувшись с этими противоречиями и отсутствием надежных источников, историк математики Жан Итар даже предположил в 1961 году, что Евклид как личность, возможно, не существовал, и что это имя могло обозначать «собирательное название« математической школы », либо настоящий мастер в окружении учеников или даже чисто вымышленное имя. Но эта гипотеза, похоже, не принимается.

Один из самых старых дошедших до нас фрагментов Элементов Евклида, обнаруженный в Оксиринхе , датируется периодом между 75 и 125 годами до нашей эры. Мы не более чем на один процент текста Евклида в более ранних источниках в конце IX — го  века.

Кинематическая геометрия

Гиперболическая геометрия нашла применение в кинематике с помощью физической космологии, введенной Германом Минковским в 1908 году. Минковский ввел такие термины, как мировая линия и собственное время, в математическую физику . Он понял, что подмногообразие событий в один момент собственного времени в будущем можно рассматривать как гиперболическое пространство трех измерений. Уже в 1890-х годах Александр Макфарлейн рисовал это подмногообразие с помощью своей « и гиперболических кватернионов , хотя Макфарлейн не использовал космологический язык, как Минковский в 1908 году. Соответствующая структура теперь называется гиперболоидной моделью гиперболической геометрии.

Неевклидовы плоские алгебры поддерживают кинематическую геометрию на плоскости. Например, разделенное комплексное число z = e a j может представлять пространственно-временное событие в один момент в будущем в системе отсчета с быстротой a . Кроме того, умножение на z равносильно преобразованию лоренцевского буста кадра с нулевой скоростью в кадр с быстротой а .

Кинематическое исследование использует двойственные числа для представления классического описания движения в абсолютном времени и пространстве : уравнения эквивалентны отображению сдвига в линейной алгебре:
zзнак равноИкс+уϵ,ϵ2знак равно,{\ displaystyle z = x + y \ epsilon, \ quad \ epsilon ^ {2} = 0,}Икс′знак равноИкс+vт,т′знак равнот{\ displaystyle x ^ {\ prime} = x + vt, \ quad t ^ {\ prime} = t}

(Икс′т′)знак равно(1v1)(Икст).{\ displaystyle {\ begin {pmatrix} x ‘\\ t’ \ end {pmatrix}} = {\ begin {pmatrix} 1 & v \\ 0 & 1 \ end {pmatrix}} {\ begin {pmatrix} x \\ t \ end {pmatrix}}.}

С двойными числами отображение т′+Икс′ϵзнак равно(1+vϵ)(т+Иксϵ)знак равнот+(Икс+vт)ϵ.{\ displaystyle t ^ {\ prime} + x ^ {\ prime} \ epsilon = (1 + v \ epsilon) (t + x \ epsilon) = t + (x + vt) \ epsilon.}

Другой взгляд на специальную теорию относительности как на неевклидову геометрию был предложен Э.Б. Уилсоном и Гилбертом Льюисом в Трудах Американской академии искусств и наук в 1912 году. Они переработали аналитическую геометрию, заложенную в алгебре расщепленных комплексных чисел, в синтетическую геометрию предпосылок. и отчисления.

Примеры

Наглядными примерами евклидовых пространств могут служить пространства:

  • E1{\displaystyle \mathbb {E^{1}} } размерности 1{\displaystyle 1} (вещественная прямая — к примеру, числовая ось);
  • E2{\displaystyle \mathbb {E^{2}} } размерности 2{\displaystyle 2} (евклидова плоскость);
  • E3{\displaystyle \mathbb {E^{3}} } размерности 3{\displaystyle 3} (евклидово трёхмерное пространство).

Более абстрактный пример:

пространство Pn{\displaystyle {\mathcal {P}}^{n}} вещественных многочленов, степени которых не превосходят n, со скалярным произведением, определённым как интеграл их произведения по конечному отрезку (или по всей прямой, но с быстро спадающей весовой функцией, например e−x2{\displaystyle e^{-x^{2}}}).

Примеры геометрических фигур в многомерном евклидовом пространстве:

  • правильные многомерные многогранники (например, N-мерный куб, N-мерный октаэдр, N-мерный тетраэдр);
  • гиперсфера;
  • .

Аксиоматизация[править | править код]

Проблема полной аксиоматизации элементарной геометрии — одна из проблем геометрии, возникшая в Древней Греции в связи с критикой этой первой попытки построить полную систему аксиом так, чтобы все утверждения евклидовой геометрии следовали из этих аксиом чисто логическим выводом без наглядности чертежей. В «Началах» Евклида утверждения, принимаемые без доказательства, назывались постулатами и аксиомами. В чём заключался принцип разделения основных положений на два списка, то это осталось невыясненным.Постулаты:

  1. Требуется, чтобы от каждой точки ко всякой другой точке можно было провести прямую линию.
  2. И чтобы каждую прямую можно было неопределённо продолжить.
  3. И чтобы из любого центра можно было описать окружность любым радиусом.
  4. И чтобы все прямые углы были равны между собой.
  5. И чтобы всякий раз, когда прямая при пересечении с двумя другими прямыми образует с ними внутренние односторонние углы, сумма которых меньше двух прямых, эти прямые пересекались с той стороны, с которой эта сумма меньше двух прямых.

Аксиомы:

  1. Равные порознь третьему равны между собой.
  2. И если к равным прибавим равные, то получим равные.
  3. И если от равных отнимем равные, то получим равные.
  4. И если к неравным прибавим равные, то получим неравные.
  5. И если удвоим равные, то получим равные.
  6. И половины равных равны между собой.
  7. И совмещающие равны.
  8. И целое больше части.
  9. И две прямые не могут заключить пространства.

Примечание: Принадлежность некоторых из аксиом именно Евклиду (4-я, 5-я, 6-я и 9-я) берётся под сомнение, возможно переписчики добавили их позже. В некоторых списках «Начал» четвёртый и пятый постулат относили к числу аксиом, потому пятый постулат иногда называют одиннадцатой аксиомой.

В 1899 году Д. Гильберт предложил первую достаточно строгую аксиоматику евклидовой геометрии.
Попытки улучшения евклидовой аксиоматики предпринимались до Гильберта Пашем, Шуром, Пеано, Веронезе, однако подход Гильберта, при всей его консервативности в выборе понятий, оказался более успешным. Кроме Гильбертовой, существуют и другие системы аксиом евклидовой геометрии (А. В.Погорелова, А. Д. Александрова, А. Н. Колмогорова и др.). Особо здесь можно отметить систему аксиом Вейля, основанную на понятии вектора

Евклид — отец геометрии

Евклид не зря считается отцом геометрии, поскольку именно он систематизировал раннее полученные знания от других известных математиков и философов прошлого и дал основы для последующего изучения математики. Он показал принцип работы плоской поверхности и 3D-геометрии.

Изучая математику наравне с последователями Платона, он упорядочил законы, сферы с конусами и другими геометрическими фигурами. Отсюда и известно понятие Евклидова математика или Евклидова геометрия.

Именно ему принадлежит основание принципов в виде аксиом, которые и сегодня преподают во всех учебных заведениях. Благодаря Евклиду появился принцип плоскости вещей и их измеримости, идеи о 13 элементах, подчеркивающих значение геометрии и использования их в быту.

Евклид был первым, кто упростил знания с помощью написанных им книг. Он первым поставил геометрию в логические рамки и сделал ее проще для исследований. Его идеи смогли пролить свет на использование геометрических данных в жизни, для решения соответствующих задач и применения конических сечений для раскрытия больших перспектив кривых с конусами, являющимися частью геометрии.

Это интересно: Биография и факты: Лидия Смирнова. Биография актрисы

[править] Научные труды

Евклид получил научное образование от учеников Платона и был приглашён в Александрию Птолемеем, сыном Лага; здесь, в Александрии он основал школу математики. Из его сочинений дошли только «Элементы геометрии», книга под заглавием «Данные», трактата по геометрической оптике и катоптрике и часть сочинения о делении площадей многоугольников.

Математики более позднего времени Папп Александрийский и Прокл упоминают на не дошедшие до нас книги Евклида: четыре книги о конических сечениях, две книги о местах на поверхности и на три книги «Поризмы».

Наиболее знаменита книга Евклида «Элементы». Он первый дал настолько стройное, систематическое и изящное изложение геометрии прямых линий и круга, что в Англии до 20 в. при начальном обучении геометрии придерживаются изложения Евклида. Изложение «Геометрии» Евклида состоит из 13 книг, к которым присоединяют 2 книги о 5 правильных многогранниках, хотя открытие их несправедливо приписывают Гипсиклу Александрийскому (жил 150 лет позднее Евклида). Собственно геометрия прямых линий, кругов и плоских фигур заключается в первых шести книгах, а в пяти последних книгах изучаются поверхности и тела, в 7-й, 8-й и 9-й книгах рассматриваются свойства чисел, в 10-й рассматриваются в подробности величины несоизмеримые. Под «данными» подразумеваются те величины, которые на основании теорем, доказанных в «Элементах», могут быть определены из условий задачи. Если, например, задана на плоскости определенная точка и круг определенного радиуса, центр которого имеет вполне определенное положение, то длины и направления касательных из точки к кругу суть прямые «данные». Что такое «поризмы» — точно неизвестно. Папп и Прокл, говоря о поризмах, выражаются столь неясно, что нельзя составить себе представления об этом предмете. Папп, между прочим, говорит о поризмах как о каком-то особом методе, применяемом с успехом при решении многих трудных задач. Возможно, поризмы представляют упрощенный способ вывода некоторых лемм либо представляют собой нечто подобное сокращенному методу аналитической геометрии или, может быть, нечто подобное тем методам, которые употребительны в высшей геометрии. В «Началах» Евклид описывает метрические свойства пространства, которое современная наука называет Евклидовым пространством. Евклидово пространство является ареной физических явлений классической физики, основы которой были заложены Галилеем и Ньютоном. Это пространство пустое, безграничное, изотропное, имеющее три измерения.

Прокл (410—485 гг. н. э.) рассказывает, что Птолемей I спросил Евклида, нет ли короткого пути для понимания геометрии, чем тот, который изложен в «Началах», на что Евклид ответил: «В геометрии нет царского пути».

Евклид придал математическую определенность атомистической идее пустого пространства, в котором движутся атомы.

Написал также работы по астрономии, оптике, теории музыки.

Неевклидова геометрия

И только через 2 с лишним тысячи лет российский математик Лобачевский усомнился в безраздельной справедливости геометрии Евклида. Он вывел «свою собственную» геометрию, которая базировалась не на плоскости, а на псевдосфере. Интересно, что все Аксиомы, выведенные Евклидом, сохранялись. Кроме одной – о параллельных прямых.

Кроме Лобачевского, «свою» геометрию вывел и немецкий математик Риман. В настоящее время три геометрии странным образом сосуществуют в мире – Евклидова, Римана и Лобачевского.

Так ли это было, как описывают некоторые истории о Евклиде, а, может, и вовсе ничего подобного не было – не столь уж важно. Автор «Математических начал» навечно вписал свое имя в анналы науки, там он и останется – наряду с такими гениями, как Ньютон, Галилей, Сократ или Пифагор

Псевдо-Евклид

Евклиду приписываются два важных трактата об античной теории музыки: «Гармоническое введение» («Гармоника») и «Деление канона» (лат. Sectio canonis). Традиция приписывать «Деление канона» Евклиду идёт ещё от Порфирия. В старинных рукописях «Гармоники» авторство приписывается Евклиду, некоему Клеониду, а также александрийскому математику Паппу. Генрих Мейбомrude (1555—1625) снабдил «Гармоническое введение» обстоятельными примечаниями, и вместе с «Делением канона» приписал их к трудам Евклида.

При последующем подробном анализе этих трактатов было определено, что первый написан в аристоксеновской традиции (например, в нём все полутоны считаются равными), а второй по стилю — явно пифагорейский (например, отрицается возможность деления тона ровно пополам). Стиль изложения «Гармонического введения» отличается догматизмом и непрерывностью, стиль «Деления канона» несколько схож с «Началами» Евклида, поскольку содержит теоремы и доказательства.

После критической публикации «Гармоники» знаменитым немецким филологом Карлом Яном (1836—1899) этот трактат стали повсеместно приписывать Клеониду и датировать II в. н.э. В русском переводе (с комментариями) его впервые издал Г. А. Иванов (Москве, 1894). «Деление канона» ныне одна часть исследователей считает аутентичным сочинением Евклида, а другая — анонимным сочинением в традициях Евклида. Последние по времени русские переводы «Деления канона» опубликованы (в версии Порфирия) В.Г.Цыпиным и (в версии Боэция) С.Н.Лебедевым. Критическое издание оригинального текста «Деления канона» выполнил в 1991 г. А.Барбера.

  • Назад

  • Вперёд

Добавить комментарий

Н. г. в виде проективных моделей[править | править код]

Через точку Р проходит бесконечно много «прямых», не пересекающих «прямой» а

Пусть на проективной плоскости введены проективные однородные координаты (x1,x2,x3)(x_1, x_2, x_3)
и задана некоторая овальная линия второго порядка, обозначаемая дальше буквой k, например

x12+x22−x32=x_1^2+ x_2^2-x_3^2=0

Каждое проективное отображение проективной плоскости на себя, которое оставляет на месте линию k, называется автоморфизмом относительно k. Каждый автоморфизм отображает внутренние точки линии k также во внутренние её точки. Множество всех автоморфизмов относительно линии k составляет группу. Пусть рассматриваются только точки проективной плоскости, лежащие внутри k; хорды линии k называются «прямыми». Две фигуры пусть считаются равными, если одна из них переводится в другую некоторым автоморфизмом. Так как автоморфизмы составляют группу, то имеют место основные свойства равенства фигур: если фигура А равна фигуре В, то В равна А; если фигура А равна фигуре В, а В равна фигуре С, то А. равна С. В получаемой т. о. геометрические теории будут соблюдены требования всех аксиом евклидовой геометрии, кроме аксиомы о параллельных: вместо этой последней аксиомы соблюдается аксиома о параллельных Лобачевского (см. рисунок). Тем самым получается истолкование (двумерной) геометрии Лобачевского при помощи объектов проективной плоскости или, как говорят, проективная модель геометрии Лобачевского; линию k называют абсолютом этой модели. Автоморфизмы относительно k играют роль движений. Поэтому геометрию Лобачевского можно рассматривать как теорию, изучающую свойства фигур и связанные с фигурами величины, которые остаются неизменными при автоморфизмах; короче говоря, геометрию Лобачевского можно рассматривать как теорию инвариантов группы автоморфизмов относительно овального абсолюта.

Геометрия Римана (двумерная) допускает сходное истолкование; именно она является теорией инвариантов относительно нулевого абсолюта

x12+x22+x32=,(10)x_1^2+x_2^2+x_3^2 = 0,\,\,\,(10)

При этом в качестве точек и прямых модели берутся все точки и прямые проективной плоскости; автоморфизмы определяются чисто алгебраически как линейные преобразования, которые переводят уравнение (10) в уравнение того же вида.

Евклидову геометрию также можно рассматривать как теорию инвариантов некоторой группы проективных преобразований, именно, группы автоморфизмов относительно вырожденного абсолюта

x12+x22=,x3=x_1^2 + x_2^2 = 0, x_3 = 0

то есть относительно мнимых точек (1, i, 0), (1, —i, 0); эти точки называют круговыми точками. Предметом модели являются все точки проективной плоскости, кроме точек прямой x3=x_3 = 0
, и все прямые проективной плоскости, кроме прямой x3=x_3 = 0
. В последнем случае автоморфизмы играют роль подобных преобразований, а не движений, как в случае Н. г.
Рассмотренные модели относятся к двумерным геометриям; проективные модели высших размерностей строятся аналогично.

Соответственно характеру уравнений абсолютов, геометрия Лобачевского называется гиперболической, геометрия Римана — эллиптической, геометрия Евклида — параболической.

Н. г. имеют существенные приложения в математике (теории аналитических функций, теории групп и др.) и смежных с нею областях (например, в теории относительности). Эти приложения основаны на том, что разнообразные конкретные модели Н. г. связаны с различными объектами и понятиями указанных разделов математики и смежных с нею областей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector